О КЛАССИЧЕСКОМ КВАНТОВАНИИ УРОВНЕЙ ЭНЕРГИИ В АТОМАХ

    В современной физике сложилось упрощенное схематическое (модельное) представление о квантовых переходах-прыжках электронов между дискретными уровнями энергии в атомах и молекулах на основе опытов, когда были обнаружены линейчатые спектры излучения ряда веществ. Возможно, что очень похожие процессы происходят и в ядрах. Попытаемся разобраться в этом более детально, опираясь на богатый накопленный опыт в спектроскопии и исходя из классических представлений в рамках электродинамики Максвелла-Лоренца.

   Квантование по энергии, а точнее формирование дискретных уровней энергии в атомах происходит в соответствии со стационарным статистическим уравнением Шредингера, т.е. в стационарном состоянии атомной системы или в веществе, когда все переходные процессы в основном уже закончены.

   На опыте достаточно узкие спектральные линии излучения или поглощения наблюдаются в охлажденных кристаллах, активированных переходными элементами таблицы Менделеева, в слабо возбужденных холодных газах и т.д. В охлажденных системах и при отсутствии больших внешних возмущений у системы атомов имеется достаточно времени, чтобы прийти в равновесное состояние и сформировать дискретные энергетические уровни.

   Однако эти уровни могут значительно ушириться и даже вообще исчезнуть в сильно нагретых кристаллах и газах. В этом случае всякое квантование уровней энергии может полностью отсутствовать, и вещество будет излучать в сплошном спектре частот, напоминающем спектр излучения абсолютно черного тела.

   В качестве примера достаточно привести поведение ртутной газоразрядной лампы низкого давления. При малом разрядном токе и холодных парах ртути спектр излучения такой лампы состоит из очень узких характерных линий. Однако по мере прогрева лампы и повышения давления паров ртути происходит значительное уширение данных линий. В ртутных лампах сверхвысокого давления при высокой температуре лампы ее спектр свечения является сплошным и приближается к спектру излучения абсолютно черного тела, а наиболее яркие ртутные линии превращаются в полосы свечения. Это происходит из-за того, что в результате очень частых столкновений атомов между собой уровни энергии электронных оболочек не успевают проквантоваться, что опровергает гипотезу обязательного квантования уровней энергии в атомах.

   Дипольное излучение света в системе атомов происходит на разностных средних частотах движений электронов в оболочках, т.е. на частотах биений электронной плотности, если это не запрещено правилами отбора для дипольного излучения в данных электронных конфигурациях. При этом энергия для излучения атомов черпается из кулоновского поля ядер при переходе электронов с более удаленных орбит на орбиты, расположенные ближе к ядру.

   Таким образом, в процессе излучения света атомами можно выделить два характерных явления, которые становятся как бы взаимоисключающими. С одной стороны, при малых возмущениях атомы стремятся выстроить дискретные уровни энергии в своих электронных оболочках в полном соответствии со статистическим уравнением Шредингера для функций распределения электронной плотности в атомах. С другой же стороны, эта дискретная система уровней постепенно разрушается за счет потери энергии на излучение.

   Согласно выводам классической электродинамики, потеря энергии на излучения электронами на атомных орбитах происходит достаточно медленно - с добротностью осцилляторов около 107. В таких условиях у атомов имеется достаточно времени для формирования узких дискретных уровней энергии. Поэтому в холодных газах уширение уровней энергии, а, следовательно, и спектральных линий происходит, в основном, за счет конечного радиационного времени жизни возбужденных электронов на данных уровнях. Подобное уширение спектральных линий называется радиационным уширением.

   Весь набор опытных данных в спектроскопии говорит о том, что как излучение, так и поглощение электромагнитных волн в атомных системах не является результатом некоторых квантовых прыжков электронов с уровня на уровень, а происходит по обычным законам классической электродинамики, но с учетом статистических закономерностей в сложных системах. Так называемые “квантовые эффекты” и другие дискретные закономерности в оптических спектрах появляются в сложных атомных системах в соответствии с законами классической статистической физики. Более подробно о механизмах работы атомных систем можно прочесть в следующей монографии [1] на сайте:

http://shal-14.narod.ru

 1. Шаляпин А.Л., Стукалов В.И. Введение в классическую электродинамику и атомную физику. Второе издание, переработанное и дополненное. Екатеринбург, Изд-во  Учебно-метод. Центр УПИ, 2006, 490 с.

 

 

Сайт создан в системе uCoz